The use of microdialysis for the study of drug kinetics: central nervous system pharmacokinetics of diphenhydramine in fetal, newborn, and adult sheep.

نویسندگان

  • Sam C S Au-Yeung
  • K Wayne Riggs
  • Nancy Gruber
  • Dan W Rurak
چکیده

The central nervous system (CNS) pharmacokinetics of the H(1) receptor antagonist diphenhydramine (DPHM) were studied in 100- and 120-day-old fetuses, 10- and 30-day-old newborn lambs, and adult sheep using in vivo microdialysis. DPHM was administered i.v. at five infusion rates, with each step lasting 7 h. In all ages, cerebrospinal fluid (CSF) and extracellular fluid (ECF) concentrations were very similar to each other, which suggests that DPHM between these two compartments is transferred by passive diffusion. In addition, the brain-to-plasma concentration ratios were >or=3 in all age groups, suggesting the existence of a transport process for DPHM into the brain. Both brain and plasma DPHM concentrations increased in a linear fashion over the dose range studied. However, the ECF/unbound plasma and CSF/unbound plasma DPHM concentration ratios were significantly higher in the fetus and lambs (approximately 5 to 6) than in the adult (approximately 3). The factors f(CSF) and f(ECF), the ratios of DPHM areas under the curves (AUCs) in CSF and ECF to the plasma DPHM AUC, respectively, decreased with age, indicating that DPHM is more efficiently removed from the brain with increasing age. The extent of plasma protein binding of the drug increased with age. This study provides evidence for a transporter-mediated mechanism for the influx of DPHM into the brain and also for an efflux transporter for the drug, whose activity increases with age. Moreover, the higher brain DPHM levels in the fetus and lamb compared with the adult may explain the greater CNS effects of the drug at these ages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A pharmacokinetic study of diphenhydramine transport across the blood-brain barrier in adult sheep: potential involvement of a carrier-mediated mechanism.

The purpose of this study was to examine the disposition of diphenhydramine (DPHM) across the ovine blood-brain barrier (BBB). In six adult sheep, we characterized the central nervous system (CNS) pharmacokinetics of DPHM in brain extracellular fluid (ECF) and cerebrospinal fluid (CSF) using microdialysis in two experiments. In the first experiment, DPHM was administered via a five-step i.v. in...

متن کامل

The effect of sodium thiopental as a GABA mimetic drug in neonatal period on expression of GAD65 and GAD67 genes in hippocampus of newborn and adult male rats

Objective(s): Development of the nervous system in human and most animals is continued after the birth. Critical role of this period in generation and specialization of the neuronal circuits is confirmed in numerous studies. Any pharmacological intervention in this period may result in structural, functional or behavioral abnormalities. In this study, sodium thiopental a GABA mimetic drug was a...

متن کامل

Histomorphologic study of the renal artery in post-natal life of sheep (Ovis aries)

The purpose of this study was to gain more information on the structure of different layers of renal arteryand comparing these structures in post-natal male and female sheep. To do so, right and left renal arteries of6 adult and 6 newborn animals were dissected; the middle parts of arteries were only collected. After tissueprocessing using paraffin embedding method, 5–6-μm sections were cut and...

متن کامل

Survey of Availability, Use and Knowledge about Toxicity of Diphenhydramine for Children among Iranian Mothers

Diphenhydramine, as an antihistamine drug is widely used for the treatment of allergies. However, being classified as an over the counter medication and the general belief on the low adverse effect profile of this drug has made it widely accessible to the families. Recent reports of diphenhydramine intoxication and mortality, noticeably in children and infants have raised some serious concerns....

متن کامل

Why does the central nervous system not regenerate after injury?

A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Drug metabolism and disposition: the biological fate of chemicals

دوره 35 8  شماره 

صفحات  -

تاریخ انتشار 2007